If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-297=0
a = 1; b = 4; c = -297;
Δ = b2-4ac
Δ = 42-4·1·(-297)
Δ = 1204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1204}=\sqrt{4*301}=\sqrt{4}*\sqrt{301}=2\sqrt{301}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{301}}{2*1}=\frac{-4-2\sqrt{301}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{301}}{2*1}=\frac{-4+2\sqrt{301}}{2} $
| 8d-7d=19 | | 8x+6=2(x+3) | | -16+4x=-32+4x | | w=46-6w | | 25,000-8x=0 | | 6v=4v+10 | | 3v-2v=11 | | x-2(x-4)=-6+5x-1 | | 12x-5=12x+5 | | 40,000-5x=0 | | 10^2x=150 | | 65=4y+9 | | 6+5=v | | -3x=+7x=-12 | | -3x=+7=-12 | | -55=-8b-10-b | | 10=-3.1=j | | 7n-15=4n+6 | | 12x+28+16x=180 | | 1.75h=10.5 | | 9x+12=7x+28-10 | | 6x+8=-12+7x | | 2x^2+49x-50=0 | | M-5=x10 | | n^2-14n+44=-4 | | 8x–(2x+3)=4x+1 | | 7x+5.28=3x+10 | | 3x+4x+5x=450 | | 48=5/8x | | 5x+28=3x+10 | | 90=6x-6+5x+8 | | 1=13-3x |